Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.

Identifieur interne : 000358 ( Main/Exploration ); précédent : 000357; suivant : 000359

Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.

Auteurs : Franziska Eberl [Allemagne] ; Maite Fernandez De Bobadilla [Allemagne] ; Michael Reichelt [Allemagne] ; Almuth Hammerbacher [Afrique du Sud] ; Jonathan Gershenzon [Allemagne] ; Sybille B. Unsicker [Allemagne]

Source :

RBID : pubmed:32307873

Descripteurs français

English descriptors

Abstract

Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.

DOI: 10.1111/ele.13506
PubMed: 32307873


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.</title>
<author>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fernandez De Bobadilla, Maite" sort="Fernandez De Bobadilla, Maite" uniqKey="Fernandez De Bobadilla M" first="Maite" last="Fernandez De Bobadilla">Maite Fernandez De Bobadilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028</wicri:regionArea>
<wicri:noRegion>0028</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32307873</idno>
<idno type="pmid">32307873</idno>
<idno type="doi">10.1111/ele.13506</idno>
<idno type="wicri:Area/Main/Corpus">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000345</idno>
<idno type="wicri:Area/Main/Curation">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000345</idno>
<idno type="wicri:Area/Main/Exploration">000345</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.</title>
<author>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fernandez De Bobadilla, Maite" sort="Fernandez De Bobadilla, Maite" uniqKey="Fernandez De Bobadilla M" first="Maite" last="Fernandez De Bobadilla">Maite Fernandez De Bobadilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028</wicri:regionArea>
<wicri:noRegion>0028</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology letters</title>
<idno type="eISSN">1461-0248</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Basidiomycota (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (MeSH)</term>
<term>Moths (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Basidiomycota (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Larve (MeSH)</term>
<term>Papillons de nuit (MeSH)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Basidiomycota</term>
<term>Herbivory</term>
<term>Larva</term>
<term>Moths</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Basidiomycota</term>
<term>Feuilles de plante</term>
<term>Herbivorie</term>
<term>Larve</term>
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32307873</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1461-0248</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Ecology letters</Title>
<ISOAbbreviation>Ecol Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.</ArticleTitle>
<Pagination>
<MedlinePgn>1073-1084</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ele.13506</ELocationID>
<Abstract>
<AbstractText>Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eberl</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4097-6975</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernandez de Bobadilla</LastName>
<ForeName>Maite</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6691-6500</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammerbacher</LastName>
<ForeName>Almuth</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0262-2634</Identifier>
<AffiliationInfo>
<Affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1812-1551</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9738-0075</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Max-Planck-Gesellschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Max Planck Society</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016422">Letter</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Lett</MedlineTA>
<NlmUniqueID>101121949</NlmUniqueID>
<ISSNLinking>1461-023X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="Y">Basidiomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="Y">Moths</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salicaceae</Keyword>
<Keyword MajorTopicYN="N">gypsy moth</Keyword>
<Keyword MajorTopicYN="N">mycophagy</Keyword>
<Keyword MajorTopicYN="N">nutritional ecology</Keyword>
<Keyword MajorTopicYN="N">rust fungus</Keyword>
<Keyword MajorTopicYN="N">tripartite interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32307873</ArticleId>
<ArticleId IdType="doi">10.1111/ele.13506</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Al-Naemi, F. & Hatcher, P.E. (2013). Contrasting effects of necrotrophic and biotrophic plant pathogens on the aphid Aphis fabae. Entomol. Exp. Appl., 148, 234-245.</Citation>
</Reference>
<Reference>
<Citation>Baldrian, P. (2017). Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev., 41, 109-130.</Citation>
</Reference>
<Reference>
<Citation>Barbe, G.D. (1964). Relation of European earwig to snapdragon rust. Phytopathology, 54, 369-371.</Citation>
</Reference>
<Reference>
<Citation>Barbehenn, R.V., Niewiadomski, J., Kochmanski, J. & Constabel, C.P. (2012). Limited effect of reactive oxygen species on the composition of susceptible esentail amino acids in the midguts of Lymantria dispar caterpillars. Arch. Insect Biochem. Physiol., 81, 160-177.</Citation>
</Reference>
<Reference>
<Citation>Benrey, B. & Denno, R.F. (1997). The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology, 78, 987-999.</Citation>
</Reference>
<Reference>
<Citation>Berger, S., Sinha, A.K. & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J. Exp. Bot., 58, 4019-4026.</Citation>
</Reference>
<Reference>
<Citation>Biere, A. & Tack, A.J. (2013). Evolutionary adaptation in three-way interactions between plants, microbes and arthropods. Funct. Ecol., 27, 646-660.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Gershenzon, J. & Unsicker, S.B. (2011). Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72, 1497-1509.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Gershenzon, J. & Unsicker, S.B. (2013). Gypsy moth caterpillar feeding has only a marginal impact on phenolic compounds in old-growth black poplar. J. Chem. Ecol., 39, 1301-1312.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Towns, M., Unsicker, S.B., Mellway, R.D., Yip, L., Hilke, I. et al. (2014). Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. J. Chem. Ecol., 40, 150-158.</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G.A., Paetz, C., Feibicke, P., Gershenzon, J. & Unsicker, S.B. (2016). Metabolism of poplar salicinoids by the generalist herbivore Lymantria dispar (Lepidoptera). Insect Biochem. Mol. Biol., 78, 39-49.</Citation>
</Reference>
<Reference>
<Citation>Browne, L.B. (1995). Ontogenic changes in feeding behavior. In Regulatory Mechanisms in Insect Feeding (eds Chapman, R.F. & de Boer, G.). Springer, Boston (USA), pp. 307-342.</Citation>
</Reference>
<Reference>
<Citation>Busby, P.E., Peay, K.G. & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol., 209, 1681-1692.</Citation>
</Reference>
<Reference>
<Citation>Carruthers, R.I., Bergstrom, G.C. & Haynes, P.A. (1986). Accelerated development of the european corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae), induced by interactions with Colletotrichum graminicola (Melanconiales: Melanconiaceae), the causal fungus of maize anthracnose. Ann. Entomol. Soc. Am., 79, 385-389.</Citation>
</Reference>
<Reference>
<Citation>Crocoll, C., Mirza, N., Reichelt, M., Gershenzon, J. & Halkier, B.A. (2016). Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana. Frontiers in Bioengineering and. Biotechnology, 4.</Citation>
</Reference>
<Reference>
<Citation>Desurmont, G.A., Xu, H. & Turlings, T.C. (2016). Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa. Plant, Cell Environ., 39, 1920-1927.</Citation>
</Reference>
<Reference>
<Citation>Douglas, A.E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Annual Rreview of Entomology, 60, 17-34.</Citation>
</Reference>
<Reference>
<Citation>Eberl, F., Hammerbacher, A., Gershenzon, J. & Unsicker, S.B. (2018). Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytol., 220, 760-772.</Citation>
</Reference>
<Reference>
<Citation>Eberl, F., Uhe, C. & Unsicker, S.B. (2019). Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecol., 38, 104-112.</Citation>
</Reference>
<Reference>
<Citation>Elkinton, J. & Liebhold, A. (1990). Population dynamics of gypsy moth in North America. Annu. Rev. Entomol., 35, 571-596.</Citation>
</Reference>
<Reference>
<Citation>Fernandez-Conradi, P., Jactel, H., Robin, C., Tack, A.J. & Castagneyrol, B. (2018). Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology, 99, 300-311.</Citation>
</Reference>
<Reference>
<Citation>Friend, W. (1958). Nutritional requirements of phytophagous insects. Annu. Rev. Entomol., 3, 57-74.</Citation>
</Reference>
<Reference>
<Citation>Futuyma, D.J. & Agrawal, A.A. (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences: pnas.0904106106.</Citation>
</Reference>
<Reference>
<Citation>Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., 43, 205-227.</Citation>
</Reference>
<Reference>
<Citation>Hacquard, S., Petre, B., Frey, P., Hecker, A., Rouhier, N. & Duplessis, S. (2011) The poplar-poplar rust interaction: insights from genomics and transcriptomics. Journal of Pathogens 2011, 1-11. Article-ID 716041, 716011 pages.</Citation>
</Reference>
<Reference>
<Citation>Hammerbacher, A., Schmidt, A., Wadke, N., Wright, L.P., Schneider, B., Bohlmann, J. et al. (2013). A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol., 162, 1324-1336.</Citation>
</Reference>
<Reference>
<Citation>Hatcher, P.E. (1995). Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol. Rev., 70, 639-694.</Citation>
</Reference>
<Reference>
<Citation>Jennings, D.B., Ehrenshaft, M., Pharr, D.M. & Williamson, J.D. (1998). Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl Acad. Sci., 95, 15129-15133.</Citation>
</Reference>
<Reference>
<Citation>Johnson, S.N., Douglas, A.E., Woodward, S. & Hartley, S.E. (2003). Microbial impacts on plant-herbivore interactions: the indirect effects of a birch pathogen on a birch aphid. Oecologia, 134, 388-396.</Citation>
</Reference>
<Reference>
<Citation>Khaksari, M., Mazzoleni, L.R., Ruan, C., Song, P., Hershey, N.D., Kennedy, R.T. et al. (2018). Detection and quantification of vitamins in microliter volumes of biological samples by LC-MS for clinical screening. AIChE J., 64, 3709-3718.</Citation>
</Reference>
<Reference>
<Citation>Lämke, J.S. & Unsicker, S.B. (2018). Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Oecologia, 187, 377-388.</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R.L., Klein, K.A., Hemming, J.D. & Feuker, A.M. (1997). Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.). Physiol. Entomol., 22, 55-64.</Citation>
</Reference>
<Reference>
<Citation>Madsen, S.R., Kunert, G., Reichelt, M., Gershenzon, J. & Halkier, B.A. (2015). Feeding on leaves of the glucosinolate transporter mutant gtr1gtr2 reduces fitness of Myzus persicae. J. Chem. Ecol., 41, 975-984.</Citation>
</Reference>
<Reference>
<Citation>Martin, M.M. (1979). Biochemical implications of insect mycophagy. Biol. Rev., 54, 1-21.</Citation>
</Reference>
<Reference>
<Citation>Martin, M. & Kukor, J. (1984) Role of mycophagy and bacteriophagy in invertebrate nutrition. Current Perspectives in Microbial Ecology 257.</Citation>
</Reference>
<Reference>
<Citation>Mason, C.J., Couture, J.J. & Raffa, K.F. (2014). Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia, 175, 901-910.</Citation>
</Reference>
<Reference>
<Citation>Mondy, N., Charrier, B., Fermaud, M., Pracros, P. & Corio-Costet, M.-F. (1998). Olfactory and gustatory behaviour by larvae of Lobesia botrana in response to Botrytis cinerea. Entomol. Exp. Appl., 88, 1-70.</Citation>
</Reference>
<Reference>
<Citation>Moskowitz, D. & Haramaty, L. (2012). Fungi feeding by the agreeable tiger moth (Spilosoma congrua Walker) (Erebidae: Arctiinae). Journal of the Lepidopterists’ Society, 66, 230-232.</Citation>
</Reference>
<Reference>
<Citation>Oliveira, C.M., Ferreira, J.A.M., Oliveira, R.M., Santos, F.O. & Pallini, A. (2014). Ricoseius loxocheles, a phytoseiid mite that feeds on coffee leaf rust. Exp Appl Acarol, 64, 223-233.</Citation>
</Reference>
<Reference>
<Citation>Pei, M. & Shang, Y. (2005). A brief summary of Melampsora species on Populus. In Rust Diseases of Willow and Poplar (eds Pei, M.H. & McCracken, A.R.). CABI, Wallingford, pp. 51-61.</Citation>
</Reference>
<Reference>
<Citation>Ramsell, J. & Paul, N.D. (1990). Preferential grazing by molluscs of plants infected by rust fungi. Oikos, 58, 145-150.</Citation>
</Reference>
<Reference>
<Citation>Rawlings, J.E. (1984). Mycophagy in Lepidoptera. Fungus-Insect Relationships. Columbia University Press, New York, pp. 382-423.</Citation>
</Reference>
<Reference>
<Citation>Reddy, M. & Rao, A. (1976). Changes in the composition of free and protein amino acids in groundnut leaves induced by infection with Puccinia arachidis Speg. Acta Phytopathologica, 11, 167-172.</Citation>
</Reference>
<Reference>
<Citation>Reding, M.E., Alston, D.G., Thomson, S.V. & Stark, A.V. (2001). Association of powdery mildew and spider mite populations in apple and cherry orchards. Agr. Ecosyst. Environ., 84, 177-186.</Citation>
</Reference>
<Reference>
<Citation>Rizvi, S.Z.M., Raman, A., Wheatley, W., Cook, G. & Nicol, H. (2015). Influence of Botrytis cinerea (Helotiales: Sclerotiniaceae) infected leaves of Vitis vinifera (Vitales: Vitaceae) on the preference of Epiphyas postvittana (Lepidoptera: Tortricidae). Austral Entomology, 54, 60-70.</Citation>
</Reference>
<Reference>
<Citation>Robinson, G.S., Ackery, P.R., Kitching, I.J. & Beccalone, G.W. (2010) Hernández LM HOSTS database. Natural History Museum. http://www.nhm.ac.uk/our-science/data/hostplants/.</Citation>
</Reference>
<Reference>
<Citation>Schiff, N.M., Waldbauer, G.P. & Friedman, S. (1989). Response of last instar Heliothis zea larvae to carbohydrates: stimulation of biting, nutritional value. Entomol. Exp. Appl., 52, 29-37.</Citation>
</Reference>
<Reference>
<Citation>Scriber, J. & Slansky, F. Jr. (1981). The nutritional ecology of immature insects. Annu. Rev. Entomol., 26, 183-211.</Citation>
</Reference>
<Reference>
<Citation>Shikano, I., Rosa, C., Tan, C.-W. & Felton, G.W. (2017). Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol., 55, 313-331.</Citation>
</Reference>
<Reference>
<Citation>Stockhoff, B.A. (1993). Protein intake by gypsy moth larvae on homogeneous and heterogeneous diets. Physiol. Entomol., 18, 409-419.</Citation>
</Reference>
<Reference>
<Citation>Sutherland, A.M. & Parrella, M.P. (2009). Mycophagy in Coccinellidae: review and synthesis. Biological Control, 51, 284-293.</Citation>
</Reference>
<Reference>
<Citation>Takada, T., Sato, R. & Kikuta, S. (2017). A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum. PLoS ONE, 12, e0186420.</Citation>
</Reference>
<Reference>
<Citation>Ullah, C., Tsai, C.-J., Unsicker, S.B., Xue, L., Reichelt, M., Gershenzon, J. et al. (2019). Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol., 221, 960-975.</Citation>
</Reference>
<Reference>
<Citation>Unsicker, S.B., Oswald, A., Köhler, G. & Weisser, W.W. (2008). Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia, 156, 313-324.</Citation>
</Reference>
<Reference>
<Citation>Van Wees, S.C., Van der Ent, S. & Pieterse, C.M. (2008). Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol., 11, 443-448.</Citation>
</Reference>
<Reference>
<Citation>Voegele, R.T., Hahn, M., Lohaus, G., Link, T., Heiser, I. & Mendgen, K. (2005). Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol., 137, 190-198.</Citation>
</Reference>
<Reference>
<Citation>White, T.C. (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals. Springer Science & Business Media, Berlin.</Citation>
</Reference>
<Reference>
<Citation>Yarwood, C.E. (1943). Associations of thrips with powdery mildews. Mycologia 35, 189-191.</Citation>
</Reference>
<Reference>
<Citation>Yoshimatsu, S-i & Nakata, Y. (2006). Fungivory of Anatatha lignea, an interesting habit in Noctuidae (Lepidoptera). Entomol. Sci. 9, 319-325.</Citation>
</Reference>
<Reference>
<Citation>Zalucki, M.P., Clarke, A.R. & Malcolm, S.B. (2002). Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol., 47, 361-393.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Eberl, Franziska" sort="Eberl, Franziska" uniqKey="Eberl F" first="Franziska" last="Eberl">Franziska Eberl</name>
</noRegion>
<name sortKey="Fernandez De Bobadilla, Maite" sort="Fernandez De Bobadilla, Maite" uniqKey="Fernandez De Bobadilla M" first="Maite" last="Fernandez De Bobadilla">Maite Fernandez De Bobadilla</name>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000358 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000358 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32307873
   |texte=   Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32307873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020